
Towards a

Science of Parallel Programming

Keshav Pingali

The University of Texas at Austin

Problem Statement

• Community has worked on parallel
programming for more than 30 years

– programming models

– machine models

– programming languages

– ….

• However, parallel programming is still a
research problem

– matrix computations, stencil computations,
FFTs etc. are fairly well-understood

– few insights for irregular applications
• each new application is a “new

phenomenon”

• Thesis: we need a science of parallel
programming

– analysis: framework for thinking about
parallelism in application

– synthesis: produce an efficient parallel
implementation of application

“The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly

unrelated phenomena
Unifying abstractions

Specialized models

that exploit structure

Organization of talk

• Seemingly unrelated parallel algorithms
and data structures

– Stencil codes

– Delaunay mesh refinement

– Event-driven simulation

– Graph reduction of functional languages

– ………

• Unifying abstractions
– Operator formulation of algorithms

– Amorphous data-parallelism

– Galois programming model

– Baseline parallel implementation

• Specialized implementations that exploit
structure

– Structure of algorithms

– Optimized compiler and runtime system
support for different kinds of structure

• Ongoing work

Seemingly unrelated

algorithms

Examples

Application/domain Algorithm

Meshing Generation/refinement/partitioning

Compilers Iterative and elimination-based

dataflow algorithms

Functional interpreters Graph reduction, static and dynamic

dataflow

Maxflow Preflow-push, augmenting paths

Minimal spanning trees Prim, Kruskal, Boruvka

Event-driven simulation Chandy-Misra-Bryant, Jefferson

Timewarp

AI Message-passing algorithms

Stencil computations Jacobi, Gauss-Seidel,

red-black ordering

Data-mining Clustering

Stencil computation: Jacobi iteration

• Finite-difference method for solving pde’s
– discrete representation of domain: grid

• Values at interior points are updated using values at
neighbors

– values at boundary points are fixed

• Data structure:
– dense arrays

• Parallelism:
– values at next time step can be computed simultaneously

– parallelism is not dependent on runtime values

• Compiler can find the parallelism
– spatial loops are DO-ALL loops

//Jacobi iteration with 5-point stencil

//initialize array A
for time = 1, nsteps
 for <i,j> in [2,n-1]x[2,n-1]

 temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 for <i,j> in [2,n-1]x[2,n-1]:

 A(i,j) = temp(i,j)

Jacobi iteration, 5-point stencil

At At+1

Delaunay Mesh Refinement
• Iterative refinement to remove badly

shaped triangles:
 while there are bad triangles do {

Pick a bad triangle;

Find its cavity;

Retriangulate cavity;

 // may create new bad triangles

}

• Don’t-care non-determinism:
– final mesh depends on order in which bad

triangles are processed

– applications do not care which mesh is
produced

• Data structure:
– graph in which nodes represent triangles

and edges represent triangle adjacencies

• Parallelism:
– bad triangles with cavities that do not

overlap can be processed in parallel

– parallelism is dependent on runtime values
• compilers cannot find this parallelism

– (Miller et al) at runtime, repeatedly build
interference graph and find maximal
independent sets for parallel execution

Mesh m = /* read in mesh */

WorkList wl;

wl.add(m.badTriangles());

while (true) {

 if (wl.empty()) break;
 Element e = wl.get();

 if (e no longer in mesh) continue;

 Cavity c = new Cavity(e);//determine new cavity

 c.expand();

 c.retriangulate();
 m.update(c);//update mesh

 wl.add(c.badTriangles());

}

Event-driven simulation

• Stations communicate by sending
messages with time-stamps on FIFO
channels

• Stations have internal state that is
updated when a message is processed

• Messages must be processed in time-
order at each station

• Data structure:
– Messages in event-queue, sorted in time-

order

• Parallelism:
– activities created in future may interfere

with current activities

  static parallelization and interference graph
technique will not work

– Jefferson time-warp
• station can fire when it has an incoming

message on any edge

• requires roll-back if speculative conflict is
detected

– Chandy-Misra-Bryant
• conservative event-driven simulation

• requires null messages to avoid deadlock

2

5

A
B

3
4

C

6

Remarks on algorithms

• Algorithms:
– parallelism can be dependent on runtime values

• DMR, event-driven simulation, graph reduction,….

– don’t-care non-determinism
• nothing to do with concurrency

• DMR, graph reduction

– activities created in the future may interfere with current activities
• event-driven simulation…

• Data structures:
– relatively few algorithms use dense arrays

– more common: graphs, trees, lists, priority queues,…

• Parallelism in irregular algorithms is very complex
– static parallelization usually does not work

– static dependence graphs are the wrong abstraction

– finding parallelism: most of the work must be done at runtime

Organization of talk

• Seemingly unrelated parallel algorithms
and data structures

– Stencil codes

– Delaunay mesh refinement

– Event-driven simulation

– Graph reduction of functional languages

– ………

• Unifying abstractions
– Operator formulation of algorithms

– Amorphous data-parallelism

– Baseline parallel implementation for
exploiting amorphous data-parallelism

• Specialized implementations that exploit
structure

– Structure of algorithms

– Optimized compiler and runtime system
support for different kinds of structure

• Ongoing work

Operator formulation of algorithms
• Algorithm formulated in data-centric terms

– active element:
• node or edge where computation is needed

– DMR: nodes representing bad triangles

– Event-driven simulation: station with incoming
message

– Jacobi: nodes of mesh

– activity:
• application of operator to active element

– neighborhood:
• set of nodes and edges read/written to perform

computation
– DMR: cavity of bad triangle

– Event-driven simulation: station

– Jacobi: nodes in stencil

• distinct usually from neighbors in graph

– ordering:
• order in which active elements must be executed in a

sequential implementation

– any order (Jacobi,DMR, graph reduction)

– some problem-dependent order (event-driven
simulation)

• Amorphous data-parallelism
– active nodes can be processed in parallel, subject to

• neighborhood constraints
• ordering constraints

: active node

: neighborhood

Galois programming model

• Joe programmers

– sequential, OO model

– Galois set iterators: for iterating over
unordered and ordered sets of active
elements

• for each e in Set S do B(e)
– evaluate B(e) for each element in set S

– no a priori order on iterations

– set S may get new elements during
execution

• for each e in OrderedSet S do B(e)
– evaluate B(e) for each element in set S

– perform iterations in order specified by
OrderedSet

– set S may get new elements during
execution

• Stephanie programmers
– Galois concurrent data structure library

• (Wirth) Algorithms + Data structures =
Programs

– (cf) SQL database programming

Mesh m = /* read in mesh */
Set ws;
ws.add(m.badTriangles());//initialize ws

for each tr in Set ws do {

 //unordered Set iterator
 if (tr no longer in mesh) continue;
 Cavity c = new Cavity(tr);

 c.expand();
 c.retriangulate();

 m.update(c);
 ws.add(c.badTriangles());
}

DMR using Galois iterators

Concurrent

Data structure

main()

….

for each …..{

…….

…….

}

.....

Master

Joe Program

• Parallel execution model:

– shared-memory

– optimistic execution of Galois
iterators

• Implementation:

– master thread begins execution of
program

– when it encounters iterator, worker
threads help by executing
iterations concurrently

– barrier synchronization at end of
iterator

• Independence of neighborhoods:

– logical locks on nodes and edges

– implemented using CAS operations

• Ordering constraints for ordered set
iterator:

– execute iterations out of order but
commit in order

– cf. out-of-order CPUs

Galois parallel execution model

i1

i2

i3

i4

i5

Parameter tool

• Measures amorphous data-parallelism in

irregular program execution

• Idealized execution model:

– unbounded number of processors

– applying operator at active node takes one time step

– execute a maximal set of active nodes

– perfect knowledge of neighborhood and ordering

constraints

• Useful as an analysis tool

16

Example: DMR

• Input mesh:
– Produced by Triangle

(Shewchuck)

– 550K triangles

– Roughly half are badly
shaped

• Available parallelism:
– How many non-conflicting

triangles can be expanded
at each time step?

• Parallelism intensity:
– What fraction of the total

number of bad triangles
can be expanded at each
step?

Example:Barnes-Hut

• Four phases:

– build tree

– center-of-mass

– force computation

– push particles

• Problem size:

– 1000 particles

• Parallelism profile of tree

build phase similar to that

of DMR

– why?

Organization of talk

• Seemingly unrelated parallel algorithms
and data structures

– Stencil codes

– Delaunay mesh refinement

– Event-driven simulation

– Graph reduction of functional languages

– ………

• Unifying abstractions
– Operator formulation of algorithms

– Amorphous data-parallelism

– Galois programming model

– Baseline parallel implementation

• Specialized implementations that exploit
structure

– Structure of algorithms

– Optimized compiler and runtime system
support for different kinds of structure

• Ongoing work

Cautious operators

• Cautious operator implementation:
– reads all the elements in its neighborhood

before modifying any of them

– (eg) Delaunay mesh refinement

• Algorithm structure:
– cautious operator + unordered active

elements

• Optimization: optimistic execution w/o
buffering
– grab locks on elements during read phase

• conflict: someone else has lock, so release
your locks

– once update phase begins, no new locks
will be acquired

• update in-place w/o making copies

• zero-buffering

– note: this is not two-phase locking

Scheduling for unordered algorithms

• Best serial policy for DMR: LIFO
– Exploit temporal (and potentially spatial) locality

• Best parallel policy for DMR: not LIFO
– LIFO increases conflicts

– Best policy: per thread LIFOs with initial work placed in
global queue of chunks

• New work placed on creating thread’s LIFO

• When a local LIFO is empty, steal a chunk from global queue

– Application-specific policy: exploit locality while maintaining
scalability and reducing conflicts

• Scheduler is a parallel program
– can be harder to write than the application

20

Scheduler Sensitivity: DMR

0

8

16

Base Rand LIFO FIFO WS-L WS-F BS-L BS-F AS

S
p

e
e
d

u
p

 o
v
e
r

b
e
s
t

s
e
ri

a
l

•4x4-core @ 2.7GHz (Opteron 8384), Sun JDK 1.6.0, 20 GB heap, time is last of 3 in same
JVM instance

• Rand
• LIFO, FIFO: Global queue

or stack
• WS-L, WS-F: Work-stealing

with queue or stack
• BS-L, BS-F

• Base: FIFO of chunks of at
most 32 elements

• AS: Application-specific policy

Scheduling language

• A language for scheduling policies
(Nguyen &Pingali, ASPLOS 2011)

– Declarative: sophisticated schedulers w/o
writing code

– Effective: performance comparable to hand-
written and often better than previous
schedulers

22

Get good performance without writing
(serial or concurrent) scheduling code

•Barnes-Hut

Performance of Galois system (I)

•Betweenness Centrality •Delaunay Mesh Refinement

•Asynchronous Variational Integrator •Metis

Performance of Galois system (II)

• Andersen-style points-to
analysis

• Algorithm formulation
– solution to system of set

constraints
– 3 graph rewrite rules

– speedup algorithm by
collapsing cycles in constraint
graph

• State of the art C++
implementation
– Hardekopf & Lin
– red lines in graphs

• “Parallel Andersen-style
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)

Structural analysis of irregular algorithms

irregular

algorithms

topology

operator

ordering

morph

local computation

reader

general graph

grid

tree

unordered

ordered

refinement

coarsening

general

topology-driven

data-driven

Jacobi: topology: grid, operator: local computation, ordering: unordered

DMR, graph reduction: topology: graph, operator: morph, ordering: unordered

Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

Exploiting structure to eliminate speculation

Optimistic
parallelization

Interference graph

Inspector-executor

Static parallelization Compile-time

After input is given
but before execution

During program
execution

After program
is finished Data-driven, ordered algorithms

(discrete-event simulation, Dijkstra SSSP,..)

Structured topology, topology-driven algorithms
(dense linear algebra,FFT,finite-differences,..)

1

2

3

4

27

Ongoing work

• System building
– current version of Galois, Lonestar: http://iss.ices.utexas.edu/galois

• Algorithm studies:
– other kinds of structure

– intra-operator parallelism
– locality

• Specializing data structure implementations to particular algorithms
– can this be done semi-automatically?

• Program synthesis from high-level specification of algorithm

• Architectural support for irregular applications
– joint work with Derek Chiou (ECE, UT)

n1

n2

n4

n3

h4

h3

h2

n1

n2

n4

n3

h4

h3

h2

n1

n2

n4

h1

n3

h2

h4

h3

http://iss.ices.utexas.edu/galois

Summary of Galois system

 Galois system =

 Abstract Data Types (permit Joe/Stephanie separation)

 +

 Don’t-care non-determinism (unordered set iterator)

 +

 Scheduling directives (synthesis)

 +

 Optimistic parallelization (runtime system)

 +

 Exploitation of structure in algorithms and data (compiler)

Related work

• Transactional memory (TM)
– Programming model:

• TM: explicitly parallel (threads)
– transactions: synchronization mechanism for threads

– mostly memory-level conflict detection

• Galois: Joe programs are sequential OO programs
– ADT-level conflict detection

– Where do threads come from?
• TM: someone else’s problem

• Galois project: focus on sources of parallelism in algorithm

• Thread-level speculation
– Programming model:

• Galois: separation between ADT and its implementation is critical
– permits separation of Joe and Stephanie layers (cf. relational databases)

– permits more aggressive conflict detection schemes like commutativity relations

• TLS: FORTRAN/C, so no separation between ADT and implementation

– Programming model:
• Galois: don’t-care non-determinism plays a central role

• TLS: FORTRAN/C, so only ordered algorithm

30

Summary of high-level message

• Current approach
1. Static parallelization is the

norm

2. Inspector-executor, optimistic
parallelization, etc.

• needed only for weird
programs, crutch for dumb
programmers

• they are expensive: (eg) high
abort ratio

3. Dependence graphs are the
right abstraction for
parallelism

• program-centric abstraction

• Galois approach
1. Optimistic parallelization is

the baseline

2. Static parallelization,
inspector-executor etc.
• possible only for weird

programs, early-binding of
scheduling decisions,

• overheads of optimistic
parallelization can be
controlled

3. Operator formulation of
algorithms is the right
abstraction
• data-centric abstraction

Science of Parallel Programming

Seemingly

unrelated algorithms

Unifying abstractions
Specialized models

that exploit structure

2
A

B

……..

i1

i2

i3

i4

i5

