Towards a
Science of Parallel Programming

Keshav Pingali
The University of Texas at Austin

Problem Statement

Community has worked on parallel
programming for more than 30 years

— programming models

— machine models

— programming languages

However, parallel programming is still a
research problem

— matrix computations, stencil computations,
FFTs etc. are fairly well-understood
— few insights for irregular applications
» eachnew applicationis a “new
phenomenon”
Thesis: we need a science of parallel
programming
— analysis: framework for thinking about
parallelism in application

— synthesis: produce an efficient parallel
implementation of application

“The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

(Differential Forms)

Seemingly Unifyi n _ Specialized models
unrelated phenomena nitying abstractions that exploit structure

Organization of talk

Seemingly unrelated parallel algorithms
and data structures

Unifying abstractions

Specialized implementations that exploit
structure

Ongoing work

Seemingly unrelated
algorithms

Examples

Application/domain

Algorithm

Meshing

Generation/refinement/partitioning

Compilers

lterative and elimination-based
dataflow algorithms

Functional interpreters

Graph reduction, static and dynamic
dataflow

Maxflow

Preflow-push, augmenting paths

Minimal spanning trees

Prim, Kruskal, Boruvka

Event-driven simulation

Chandy-Misra-Bryant, Jefferson
Timewarp

Al

Message-passing algorithms

Stencil computations

Jacobi, Gauss-Seidel,
red-black ordering

Data-mining

Clustering

Stencil computation: Jacobi iteration

Finite-difference method for solving pde’s
— discrete representation of domain: grid

Values at interior points are updated using values at
neighbors

— values at boundary points are fixed
Data structure:
— dense arrays
Parallelism:
— values at next time step can be computed simultaneously
— parallelism is not dependenton runtime values
Compiler can find the parallelism
— spatial loops are DO-ALL loops

/lJacobiiteration with 5-point stencil
/linitialize array A
fortime = 1, nsteps

for<i,j> in [2,n-1]x[2,n-1]
temp(i,))=0.25*(A(i-1,))+A(+1,)+A(i,j-1)+A(i,j+1))
for<i,j> in [2,n-1]x[2,n-1]:

A(i,j) = temp(i,))

Jacobi iteration, 5-point stencil

Delaunay Mesh Refinement

Mesh m = /* read in mesh */
WorkList wil;
wl.add(m.badTriangles());
while (true) {

If (wl.empty()) break;
Element e = wl.get(); Before
if (e no longer in mesh) continue;

Cavity ¢ = new Cavity(e);//determine new cavity
c.expand();

c.retriangulate();

m.update(c);//update mesh
wl.add(c.badTriangles());

} After

Available parallelism

Event-driven simulation

Stations communicate by sending
messages with time-stamps on FIFO
channels

Stations have internal state that is
updated when a message is processed

Messages must be processed in time-
order at each station

Data structure:

— Messagesin event-queue, sorted in time-
order

Parallelism;

— activities created in future may interfere
with current activities

=>» static parallelization and interference graph
technique will not work
— Jeffersontime-warp

+ station can fire when it has an incoming
message on any edge

* requires roll-back if speculative conflict is
detected

— Chandy-Misra-Bryant
« conservative event-driven simulation
* requires null messages to avoid deadlock

Remarks on algorithms

« Algorithms:
— parallelism can be dependent on runtime values
« DMR, event-driven simulation, graph reduction,....
— don’t-care non-determinism

» nothing to do with concurrency
 DMR, graph reduction

— activities created in the future may interfere with current activities
« event-driven simulation...
* Data structures:
— relatively few algorithms use dense arrays
— more common: graphs, trees, lists, priority queues,...
« Parallelism in irregular algorithms is very complex
— static parallelization usually does not work
— static dependence graphs are the wrong abstraction
— finding parallelism: most of the work must be done at runtime

Organization of talk

Seemingly unrelated parallel algorithms
and data structures

Unifying abstractions
— Operator formulation of algorithms
— Amorphous data-parallelism

— Baseline parallel implementation for
exploiting amorphous data-parallelism

Specialized implementations that exploit
structure

Ongoing work

Operator formulation of algorithms

« Algorithm formulated in data-centric terms

— active element:
* node or edge where computation is needed
— DMR: nodes representing bad triangles
— Event-driven simulation: station with incoming
message
— Jacobi: nodes of mesh :'
— activity: ".
» application of operator to active element 3
— neighborhood:)
» set of nodes and edges read/written to perform
computation
— DMR: cawvity of bad triangle
— Event-driven simulation: station
— Jacobi: nodes in stencil
« distinct usually from neighbors in graph

— ordering:
+ order in which active elements must be executed in a (") - active node
sequential implementation
— any order (Jacobi,DMR, graph reduction) - neighborhood
— some problem-dependent order (event-driven
simulation)

 Amorphous data-parallelism
— active nodes can be processed in parallel, subject to
* neighborhood constraints
« ordering constraints

Galois programming model

e Joe programmers

sequential, OO model

Galois set iterators: for iterating over
unordered and ordered sets of active
elements

« foreacheinSet S do B(e)
— evaluate B(e) for each element inset S
— no a priori order on iterations
— set S may get new elements during
execution
+ foreacheinOrderedSetS do B(e)
— evaluate B(e) for each element inset S

— perform iterations in order specified by
OrderedSet

— set S may get new elements during
execution

« Stephanie programmers

— Galois concurrent data structure library

* (Wirth) Algorithms + Data structures =
Programs

(cf) SQL database programming

Mesh m = /* read in mesh*/
Setws;
ws.add(m.badTriangles());//initialize ws

foreachtrin Setws do{

/flunordered Set iterator

if (tr no longer in mesh) continue;

Cavity ¢ = new Cavity(tr);

c.expand();

c.retriangulate();

m.update(c);

ws.add(c.badTriangles());

DMR using Galois iterators

Galois parallel execution model

Parallel execution model:
— shared-memory
— optimistic execution of Galois Master

iterators m ain()
Implementation:

— master thread begins execution of | .
program for each{

— when it encounters iterator, worker |
threads help by executing
iterations concurrently |

— barrier synchronization at end of }
iterator

Independence of neighborhoods:
— logical locks on nodes and edges
— implemented using CAS operations

Ordering constraints for ordered set Joe Program
iterator: Data structure

— execute iterations out of order but
commit in order

— cf. out-of-order CPUs

Concurrent

Parameter tool

 Measures amorphous data-parallelism In
Irregular program execution

 |dealized execution model.:
— unbounded number of processors
— applying operator at active node takes one time step
— execute a maximal set of active nodes
— perfect knowledge of neighborhood and ordering
constraints

« Useful as an analysis tool

Example: DMR

* Input mesh: o

— Produced bz Triangle '
(Shewchuck)

— 550K triangles

— Roughly half are badly .
shaped

IsSm

30000

20000

10000

Available Parallel

L]
T 7

* Avalilable parallelism: 2 0
— How many non-conflicting Computation Step

=1

triangles can be expanded 100
at each time step?

« Parallelism intensity:

— Whatfraction of the total
number of bad triangles
can be expanded at each
step?

Parallelism Intensity
= [=r] (=]
= (] (=]

1 l LI l LI | T

M
=
L LI

=
T 1

=

20 40
Gomputation Step

Example:Barnes-Hut

Four phases:

— build tree

— center-of-mass

— force computation
— push particles

Problem size:
— 1000 particles

Parallelism profile of tree
build phase similar to that
of DMR

— why?

1000

800
|

600
|

Available Parallelism

200 400

0

parameter—barneshut-fourloops—000

Particle push

Tree build

£

Center of mass

Computation Step

Organization of talk

Seemingly unrelated parallel algorithms
and data structures

Unifying abstractions

Specialized implementations that exploit
structure

— Structure of algorithms

— Optimized compiler and runtime system
support for different kinds of structure

Ongoing work

Cautious operators

Cautious operator implementation:

— reads all the elements in its neighborhood
before modifying any of them

— (eg) Delaunay mesh refinement
Algorithm structure:

— cautious operator + unordered active
elements
Optimization: optimistic execution w/o Before
buffering
— grab locks on elements during read phase

+ conflict: someone else has lock, so release
your locks

— once update phase begins, no new locks
will be acquired

» update in-place w/o making copies
 zero-buffering
— note: this is not two-phase locking After

Scheduling for unordered algorithms

* Best serial policy for DMR: LIFO
— Exploit temporal (and potentially spatial) locality

« Best parallel policy for DMR: not LIFO
— LIFO increases conflicts

— Best policy: per thread LIFOs with initial work placed in
global queue of chunks

* New work placed on creating thread’s LIFO
« When a local LIFO is empty, steal a chunk from global queue

— Application-specific policy: exploit locality while maintaining
scalability and reducing conflicts

« Scheduler is a parallel program
— can be harder to write than the application

20

Scheduler Sensitivity: DMR

16

7

(¢D]

O

0

°5 8

=5 0N

g @)

Q

Q

g I = i I I I

; - B
Base Rand LIFO FIFO WSL WSF BSL BSF

 Rand « Base: FIFO of chunks of at
« LIFO, FIFO: Global queue most 32 elements

or stack . _ N e
. % L. WS-F: Wortﬁ stealing AS: Application-specific policy
wit queue or stac

« BS-L, BS-F

*4x4-core @ 2.7GHz (Opteron 8384), Sun JDK 1.6.0, 20 GB heap, time is last of 3 in same
JVM instance

Scheduling language

* A language for scheduling policies
(Nguyen &Pingali, ASPLOS 2011)

— Declarative: sophisticated schedulers w/o
writing code

— Effective: performance comparable to hand-
written and often better than previous
schedulers

Get good performance without writing

(serial or concurrent) scheduling code

22

Performance of Galois system (l)

20 -

=3

E‘IE-

%)

@ 10 -

= .

m©

[i¥]

o 5-

o

1))
| | | |
5 10 15 20

Threads
Betweenness Centrality
20 -

=3

E‘IE-

)

@ 10 -

= -

©

&

w9

[iF]

5]
| | | |
5 10 15 20

Threads

*Asynchronous Variational Integrator

20=

| I 1 1
5 10 15 20
Threads

*Delaunay Mesh Refinement

3.0- —
L]

25- .

20-

1.5-

10- ®
| | | 1
5 10 15 20

Threads
*Metis

Performance of Galois system (ll)

Andersen-style points-to
analysis
Algorithm formulation

— solution to system of set
constraints

— 3 graph rewrite rules
— speedup algorithm by
collapsing cycles in constraint
graph
State of the art C++
Implementation
— Hardekopf & Lin
— red lines in graphs
“Parallel Andersen-style

points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)

time (sec.)

time (sec.)

gimp

25.00

20.00 -

15.00

10.00

5.00

0.00

25.00

20.00

15.00

10.00

5.00

0.00

Structural analysis of irreqular algorithms

generalgraph

topology grid
tree
refinement
morph < coarsening
general
: topology-driven
|rregl_JIar operator Iocalcomputation<
algorithms data-driven
reader

unordered

ordering <
ordered

Jacobi: topology: grid, operator: local computation, ordering: unordered
DMR, graph reduction: topology: graph, operator. morph, ordering: unordered
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

Exploiting structure to eliminate speculation

Compile-time

After inputis given
but before execution

During program
execution

After program
Is finished

_ o Structured topology, topology-driven algorithms
Static parallelization (dense linear algebra,FFT finite-differences,..)

Inspector-executor

Interference graph

Optimistic _ _
parallelization Data-driven, ordered algorithms
(discrete-event simulation, Dijkstra SSSP,..)

27

Ongoing work

r?/O) /:7' n, f n,
A o A

r “—o~
h, " X h
h4 ' 4

System building
— current version of Galois, Lonestar: http://iss.ices.utexas.edu/galois
Algorithm studies:
— other kinds of structure
— intra-operator parallelism
— locality
Specializing data structure implementations to particular algorithms
— can this be done semi-automatically?
Program synthesis from high-level specification of algorithm
Architectural support for irregular applications
— joint work with Derek Chiou (ECE, UT)

http://iss.ices.utexas.edu/galois

Summary of Galois system

Galois system =

Abstract Data Types (permit Joe/Stephanie separation)
+

Don’t-care non-determinism (unordered set iterator)
+

Scheduling directives (synthesis)
+

Optimistic parallelization (runtime system)
+

Exploitation of structure in algorithms and data (compiler)

Related work

Transactional memory (TM)

— Programming model:

 TM: explicitly parallel (threads)
— transactions: synchronization mechanism for threads
— mostly memory-level conflict detection

» Galois: Joe programs are sequential OO programs
— ADT-level conflict detection

— Where do threads come from?
* TM: someone else’s problem
» Galois project: focus on sources of parallelism in algorithm

Thread-level speculation

— Programming model:

* Galois: separation between ADT and its implementation is critical
— permits separation of Joe and Stephanie layers (cf. relational databases)
— permits more aggressive conflict detection schemes like commutativity relations

* TLS: FORTRAN/C, so no separation between ADT and implementation

— Programming model:
* Galois: don’t-care non-determinism plays a central role
* TLS: FORTRAN/C, so only ordered algorithm

30

Summary of high-level message

rrent approach « (Galois approach

1.\ Static parallelization is the 1. Optimistic parallelization is
the baseline
2. Indgector-executor, optimistic 2. Static parallelization,
Inspector-executor etc.
« possible onlv for weird
programs. ¢, | *-binding of
s, crutch for dumb sched: 5" _cisions,
* oV \30 .5 of optimistic
they are expensive: (eg) high pa 2 cization can be
coiitrolled
3. hs are the 3. Operator formulation of

algorithms is the right
abstraction

 data-centric abstraction

parallelism
* program-centric abstigction

Science of Parallel Programming

Job Scheduler

0%
oo, Bt

«)

Specialized models

Seemingly Unitying abstractions that exploit structure

unrelated algorithms

