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Problem Statement 

• Community has worked on parallel 
programming for more than 30 years 

– programming models 

– machine models 

– programming languages 

– …. 

• However, parallel programming is still a 
research problem  

– matrix computations, stencil computations, 
FFTs  etc. are fairly well-understood 

– few insights for irregular applications  
• each new application is a “new 

phenomenon” 

• Thesis: we need a science of parallel 
programming  

– analysis: framework for thinking about 
parallelism in application 

– synthesis: produce an efficient parallel 
implementation of application 

 

“The Alchemist” Cornelius Bega (1663) 



Analogy: science of electro-magnetism  

Seemingly  

unrelated phenomena 
Unifying abstractions 

Specialized models 

that exploit structure 



Organization of talk 

• Seemingly unrelated parallel algorithms 
and data structures 

– Stencil codes 

– Delaunay mesh refinement 

– Event-driven simulation 

– Graph reduction of functional languages 

– ……… 

• Unifying abstractions 
– Operator formulation of algorithms 

– Amorphous data-parallelism 

– Galois programming model 

– Baseline parallel implementation  

• Specialized implementations that exploit 
structure 

– Structure of algorithms 

– Optimized compiler and runtime system 
support for different kinds of structure 

• Ongoing work 

 

 



Seemingly unrelated  

algorithms 



Examples 

Application/domain Algorithm 

Meshing Generation/refinement/partitioning 

Compilers Iterative and elimination-based 

dataflow algorithms 

Functional interpreters Graph reduction, static and dynamic 

dataflow 

Maxflow Preflow-push, augmenting paths 

Minimal spanning trees Prim, Kruskal, Boruvka 

Event-driven simulation Chandy-Misra-Bryant, Jefferson 

Timewarp 

AI Message-passing algorithms 

Stencil computations Jacobi, Gauss-Seidel,                    

red-black ordering 

Data-mining Clustering 



Stencil computation: Jacobi iteration 

• Finite-difference method for solving pde’s 
– discrete representation of domain: grid 

• Values at interior points are updated using values at 
neighbors 

– values at boundary points are fixed  

• Data structure:  
– dense arrays 

• Parallelism:  
– values at next time step can be computed simultaneously 

– parallelism is not dependent on runtime values 

• Compiler can find the parallelism 
– spatial loops are DO-ALL loops 

 

 
//Jacobi iteration with 5-point stencil 

//initialize array A 
for time = 1, nsteps 
    for <i,j> in [2,n-1]x[2,n-1] 

         temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
    for <i,j> in [2,n-1]x[2,n-1]: 

         A(i,j) = temp(i,j) 

Jacobi iteration, 5-point stencil 

At At+1 



Delaunay Mesh Refinement 
• Iterative refinement to remove badly 

shaped triangles: 
  while there are bad triangles do { 

Pick a bad triangle; 

Find its cavity; 

Retriangulate cavity;  

     // may create new bad triangles 

} 

• Don’t-care non-determinism: 
– final mesh depends on order in which bad 

triangles are processed 

– applications do not care which mesh is 
produced 

• Data structure:  
– graph in which nodes represent triangles 

and edges represent triangle adjacencies 

• Parallelism:  
– bad triangles with cavities that do not 

overlap can be processed in parallel 

– parallelism is dependent on runtime values 
• compilers cannot find this parallelism  

– (Miller et al) at runtime, repeatedly build 
interference graph and find maximal 
independent sets for parallel execution 

 

Mesh m = /* read in mesh */ 

WorkList wl; 

wl.add(m.badTriangles()); 

while (true) { 

      if ( wl.empty() ) break; 
 Element e = wl.get();      

 if (e no longer in mesh) continue; 

 Cavity c = new  Cavity(e);//determine new cavity 

 c.expand(); 

 c.retriangulate(); 
 m.update(c);//update mesh 

 wl.add(c.badTriangles()); 

} 



Event-driven simulation 

• Stations communicate by sending 
messages with time-stamps on FIFO 
channels 

• Stations have internal state that is 
updated when a message is processed 

• Messages must be processed in time-
order at each station 

• Data structure: 
– Messages in event-queue, sorted in time-

order 

• Parallelism:  
– activities created in future may interfere 

with current activities  

  static parallelization and interference graph 
technique will not work 

– Jefferson time-warp 
• station can fire when it has an incoming 

message on any edge 

• requires roll-back if speculative conflict is 
detected 

– Chandy-Misra-Bryant 
• conservative event-driven simulation 

• requires null messages to avoid deadlock 
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Remarks on algorithms 

• Algorithms: 
– parallelism can be dependent on runtime values 

• DMR, event-driven simulation, graph reduction,…. 

– don’t-care non-determinism 
• nothing to do with concurrency 

• DMR, graph reduction 

– activities created in the future may interfere with current activities 
• event-driven simulation… 

• Data structures: 
– relatively few algorithms use dense arrays 

– more common: graphs, trees, lists, priority queues,… 

• Parallelism in irregular algorithms is very complex 
– static parallelization usually does not work 

– static dependence graphs are the wrong abstraction 

– finding parallelism: most of the work must be done at runtime 

 
 

 

 



Organization of talk 

• Seemingly unrelated parallel algorithms 
and data structures 

– Stencil codes 

– Delaunay mesh refinement 

– Event-driven simulation 

– Graph reduction of functional languages 

– ……… 

• Unifying abstractions 
– Operator formulation of algorithms 

– Amorphous data-parallelism 

– Baseline parallel implementation for 
exploiting amorphous data-parallelism 

• Specialized implementations that exploit 
structure 

– Structure of algorithms 

– Optimized compiler and runtime system 
support for different kinds of structure 

• Ongoing work 

 

 



Operator formulation of algorithms 
• Algorithm formulated in data-centric terms 

– active element:  
• node or edge where computation is needed 

– DMR: nodes representing bad triangles 

– Event-driven simulation: station with incoming 
message 

– Jacobi: nodes of mesh 

– activity: 
• application of operator to active element 

– neighborhood: 
• set of nodes and edges read/written to perform 

computation 
– DMR: cavity of bad triangle 

– Event-driven simulation: station 

– Jacobi: nodes in stencil 

• distinct usually from neighbors in graph 

– ordering:  
• order in which active elements must be executed in a 

sequential implementation 

– any order (Jacobi,DMR, graph reduction) 

– some problem-dependent order (event-driven 
simulation) 

• Amorphous data-parallelism 
– active nodes can be processed in parallel, subject to 

• neighborhood constraints 
• ordering constraints 

 
 

: active node 

: neighborhood 



Galois programming model 

 
• Joe programmers  

– sequential, OO model  

– Galois set iterators: for iterating over 
unordered and ordered sets of active 
elements 

• for each e in Set S do B(e) 
– evaluate B(e) for each element in set S 

– no a priori order on iterations 

– set S may get new elements during 
execution 

• for each e in OrderedSet S do B(e) 
– evaluate B(e) for each element in set S 

– perform iterations in order specified by 
OrderedSet 

– set S may get new elements during 
execution 

 

• Stephanie programmers 
– Galois concurrent data structure library  

 

• (Wirth) Algorithms + Data structures = 
Programs 

– (cf)  SQL database programming 

 

Mesh m = /* read in mesh */ 
Set ws; 
ws.add(m.badTriangles());//initialize ws 

 
for each tr in Set ws do {  

       //unordered Set iterator                 
  if (tr no longer in mesh) continue; 
  Cavity c = new Cavity(tr); 

  c.expand(); 
  c.retriangulate(); 

  m.update(c); 
  ws.add(c.badTriangles());  
} 

DMR using Galois iterators 



Concurrent  

Data structure 

main() 

…. 

for each …..{ 

……. 

……. 

} 

..... 

Master 

Joe Program 

• Parallel execution model: 

– shared-memory 

– optimistic execution of Galois 
iterators 

• Implementation: 

– master thread begins execution of 
program  

– when it encounters iterator, worker 
threads help by executing  
iterations concurrently 

– barrier synchronization at end of 
iterator 

• Independence of neighborhoods: 

– logical locks on nodes and edges 

– implemented using CAS operations 

• Ordering constraints for ordered set 
iterator: 

– execute iterations out of order but 
commit in order 

– cf. out-of-order CPUs 

 

 

 

Galois parallel execution model 
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Parameter tool 

• Measures amorphous data-parallelism in 

irregular program execution 

• Idealized execution model: 

– unbounded number of processors 

– applying operator at active node takes one time step 

– execute a maximal set of active nodes 

– perfect knowledge of neighborhood and ordering 

constraints 

• Useful as an analysis tool 
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Example: DMR 

• Input mesh: 
– Produced by Triangle 

(Shewchuck) 

– 550K triangles 

– Roughly half are badly 
shaped 

• Available parallelism: 
– How many non-conflicting 

triangles can be expanded 
at each time step? 

• Parallelism intensity: 
– What fraction of the total 

number of bad triangles 
can be expanded at each 
step? 

 



Example:Barnes-Hut 

• Four phases: 

– build tree 

– center-of-mass 

– force computation 

– push particles 

• Problem size: 

– 1000 particles 

• Parallelism profile of tree 

build phase similar to that 

of DMR 

– why? 

 

 



Organization of talk 

• Seemingly unrelated parallel algorithms 
and data structures 

– Stencil codes 

– Delaunay mesh refinement 

– Event-driven simulation 

– Graph reduction of functional languages 

– ……… 

• Unifying abstractions 
– Operator formulation of algorithms 

– Amorphous data-parallelism 

– Galois programming model 

– Baseline parallel implementation  

• Specialized implementations that exploit 
structure 

– Structure of algorithms 

– Optimized compiler and runtime system 
support for different kinds of structure 

• Ongoing work 

 

 



Cautious operators 

• Cautious operator implementation: 
– reads all the elements in its neighborhood 

before modifying any of them 

– (eg) Delaunay mesh refinement 

• Algorithm structure: 
– cautious operator + unordered active 

elements 

• Optimization: optimistic execution w/o 
buffering  
– grab locks on elements during read phase 

• conflict: someone else has lock, so release 
your locks 

– once update phase begins, no new locks 
will be acquired  

• update in-place w/o making copies 

• zero-buffering 

– note: this is not two-phase locking 

 

 



Scheduling for unordered algorithms 

• Best serial policy for DMR: LIFO 
– Exploit temporal (and potentially spatial) locality 

 

• Best parallel policy for DMR: not LIFO 
– LIFO increases conflicts 

– Best policy: per thread LIFOs with initial work placed in 
global queue of chunks 

• New work placed on creating thread’s LIFO 

• When a local LIFO is empty, steal a chunk from global queue 

– Application-specific policy: exploit locality while maintaining 
scalability and reducing conflicts 

• Scheduler is a parallel program 
– can be harder to write than the application 
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Scheduler Sensitivity: DMR 
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•4x4-core @ 2.7GHz  (Opteron 8384), Sun JDK 1.6.0, 20 GB heap, time is last of 3 in same 
JVM instance 

• Rand 
• LIFO, FIFO: Global queue 

or stack 
• WS-L, WS-F: Work-stealing 

with queue or stack 
• BS-L, BS-F 

• Base: FIFO of chunks of at 
most 32 elements 

• AS: Application-specific policy 



Scheduling language  

• A language for scheduling policies 
(Nguyen &Pingali, ASPLOS 2011) 

– Declarative: sophisticated schedulers w/o 
writing code 

– Effective: performance comparable to hand-
written and often better than previous 
schedulers 

22 

Get good performance without  writing 
(serial or concurrent) scheduling code 



•Barnes-Hut 

Performance of Galois system (I) 

•Betweenness Centrality •Delaunay Mesh Refinement 

•Asynchronous Variational Integrator •Metis 



Performance of Galois system (II) 

• Andersen-style points-to 
analysis 

• Algorithm formulation 
–  solution to system of set 

constraints 
– 3 graph rewrite rules 

– speedup algorithm by 
collapsing cycles in constraint 
graph 

• State of the art C++ 
implementation 
– Hardekopf & Lin 
– red lines in graphs 

• “Parallel Andersen-style 
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010) 

 



Structural analysis of irregular algorithms 

irregular 

algorithms 

topology 

operator 

ordering 

morph 

local computation 

reader 

general graph 

grid 

tree 

unordered 

ordered 

refinement 

coarsening 

general 

topology-driven 
 
data-driven 

Jacobi: topology: grid, operator: local computation, ordering: unordered  

DMR, graph reduction: topology: graph, operator: morph, ordering: unordered 

Event-driven simulation: topology: graph, operator: local computation, ordering: ordered 



Exploiting structure to eliminate speculation 

Optimistic 
parallelization 

Interference graph 

Inspector-executor 

Static parallelization Compile-time 

After input is given 
but before execution 

During program 
execution 

After program  
is finished Data-driven, ordered algorithms 

(discrete-event simulation, Dijkstra SSSP,..) 

Structured topology, topology-driven algorithms 
(dense linear algebra,FFT,finite-differences,..) 
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Ongoing work 

• System building 
– current version of Galois, Lonestar: http://iss.ices.utexas.edu/galois 

• Algorithm studies: 
– other kinds of structure  

– intra-operator parallelism 
– locality 

• Specializing data structure implementations to particular algorithms 
– can this be done semi-automatically? 

• Program synthesis from high-level specification of algorithm 

• Architectural support for irregular applications 
– joint work with Derek Chiou (ECE, UT) 
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Summary of Galois system 

  Galois system =  

 

            Abstract Data Types (permit Joe/Stephanie separation) 

                          + 

            Don’t-care non-determinism (unordered set iterator) 

                          + 

            Scheduling directives (synthesis) 

                          + 

            Optimistic parallelization (runtime system) 

                          + 

            Exploitation of structure in algorithms and data (compiler) 



Related work 

• Transactional memory (TM) 
– Programming model: 

• TM: explicitly parallel (threads) 
– transactions: synchronization mechanism for threads 

– mostly memory-level conflict detection  

• Galois: Joe programs are sequential OO programs 
– ADT-level conflict detection 

 

– Where do threads come from? 
• TM: someone else’s problem  

• Galois project: focus on sources of parallelism in algorithm 
 

• Thread-level speculation 
– Programming model:  

• Galois: separation between ADT and its implementation is critical 
– permits separation of Joe and Stephanie layers (cf. relational databases) 

– permits more aggressive conflict detection schemes like commutativity relations 

• TLS: FORTRAN/C, so no separation between ADT and implementation 

 

– Programming model: 
• Galois: don’t-care non-determinism plays a central role  

• TLS: FORTRAN/C, so only ordered algorithm 
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Summary of high-level message 

• Current approach 
1. Static parallelization is the 

norm 

2. Inspector-executor, optimistic 
parallelization, etc.  

• needed only for weird 
programs, crutch for dumb 
programmers 

• they are expensive: (eg) high 
abort ratio 

3. Dependence graphs are the 
right abstraction for 
parallelism 

• program-centric abstraction 

 

 

 

• Galois approach 
1. Optimistic parallelization is 

the baseline 

2. Static parallelization, 
inspector-executor etc. 
• possible only for weird 

programs, early-binding of 
scheduling decisions,  

• overheads of optimistic 
parallelization can be 
controlled 

3. Operator formulation of 
algorithms is the right 
abstraction 
• data-centric abstraction 

 



Science of Parallel Programming  

Seemingly  

unrelated algorithms 

Unifying abstractions 
Specialized models 

that exploit structure 
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